Selasa, 01 Oktober 2013

Persamaan parametrik

Persamaan parametrik

Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:
  • titik awal gerakan dilakukan (x_0,y_0)\!
  • kecepatan sudut putaran \omega\! (yang berarti suatu GMB)
  • pusat lingkaran (x_c,y_c)\!
untuk kemudian dibuat persamaannya [2].
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan R\! yang diperoleh melalui:
R = \sqrt{(x_0 - x_c)^2 + (y_0 - y_c)^2} \!
Setelah diperoleh nilai jari-jari lintasan, persamaan dapat segera dituliskan, yaitu
x(t) = x_c + R cos(\omega t + \phi_x) \!
y(t) = y_c + R sin(\omega t + \phi_y) \!
dengan dua konstanta \phi_x \! dan \phi_y \! yang masih harus ditentukan nilainya. Dengan persyaratan sebelumnya, yaitu diketahuinya nilai (x_0,y_0)\!, maka dapat ditentukan nilai \phi_x \! dan \phi_y \!:
\phi_x = \arccos \left( \frac{x_0 - x_c}{R} \right)\!
\phi_y = \arcsin \left( \frac{y_0 - y_c}{R} \right)\!
Perlu diketahui bahwa sebenarnya
\phi_x = \phi_y \!
karena merupakan sudut awal gerak melingkar.

Hubungan antar besaran linier dan angular

Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.

Kecepatan tangensial dan kecepatan sudut

Kecepatan linier total dapat diperoleh melalui
v  = \sqrt{v_x^2 + v_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
v_T  = v = \sqrt{v_x^2 + v_y^2}
dengan
v_x  = \dot{x} = \frac{dx}{dt}
v_y  = \dot{y} = \frac{dy}{dt}
diperoleh
v_x  = -\omega R \sin(\omega t + \phi_x) \!
v_y  = \omega R \cos(\omega t + \phi_x) \!
sehingga
v_T  = \sqrt{(-\omega)^2 R^2 \sin^2(\omega t + \phi_x) + \omega^2 R^2 \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R \sqrt{\sin^2(\omega t + \phi_x) + \cos^2(\omega t + \phi_x)}\!
v_T  = \omega R\!

Percepatan tangensial dan kecepatan sudut

Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melalui
a  = \sqrt{a_x^2 + a_y^2}
dan karena batasan implementasi persamaan parametrik pada gerak melingkar, maka
a_T  = a = \sqrt{a_x^2 + a_y^2}
dengan
a_x  = \ddot{x} = \frac{d^2x}{dt^2}
a_y  = \ddot{y} = \frac{d^2y}{dt^2}
diperoleh
a_x  = -\omega^2 R \cos(\omega t + \phi_x) \!
a_y  = -\omega^2 R \sin(\omega t + \phi_x) \!
sehingga
a_T  = \sqrt{(-\omega)^4 R^2 \cos^2(\omega t + \phi_x) + \omega^4 R^2 \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R \sqrt{\cos^2(\omega t + \phi_x) + \sin^2(\omega t + \phi_x)}\!
a_T  = \omega^2 R\!

Kecepatan sudut tidak tetap

Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwa
\omega \rightarrow \omega(t) = \int \alpha dt = \omega_0 + \alpha t \!
dengan \alpha\! percepatan sudut dan \omega_0\! kecepatan sudut mula-mula. Penurunan GMBB ini akan menjadi sedikit lebih rumit dibandingkan pada kasus GMB di atas.
Persamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
x(t) = x_c + R \cos \theta \!
y(t) = y_c + R \sin \theta \!
di mana \theta = \theta(t) \! adalah sudut yang dilampaui dalam suatu kurun waktu. Seperti telah disebutkan di atas mengenai hubungan antara \theta \!, \omega \! dan \alpha \! melalui proses integrasi dan diferensiasi, maka dalam kasus GMBB hubungan-hubungan tersebut mutlak diperlukan.

Kecepatan sudut

Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperoleh
v_x(t) = - R \sin \theta\ \frac{d\theta}{dt} =  - \omega(t) R \sin \theta \!
v_y(t) = R \cos \theta \ \frac{d\theta}{dt} = \omega(t) R \cos \theta \!
dengan
\frac{d\theta}{dt} = \omega(t) = \omega_0 + \alpha\ t \!
Dapat dibuktikan bahwa
v(t) = v_T(t) = \sqrt{v_x^2(t) + v_y^2(t)} = \omega(t) R \!
sama dengan kasus pada GMB.

Percepatan total

Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier dapat memberikan

yang dapat disederhanakan menjadi

Selanjutnya
yang umumnya dituliskan
dengan
yang merupakan percepatan sudut, dan
yang merupakan percepatan sentripetal. Suku sentripetal ini muncul karena benda harus dibelokkan atau kecepatannya harus diubah sehingga bergerak mengikuti lintasan lingkaran.

Gerak berubah beraturan

Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Gerak berubah beraturan
KecepatanGLBBGMB
Besarberubahtetap
Arahtetapberubah

Tidak ada komentar:

Posting Komentar